Mathematics
 Higher level
 Paper 3 - sets, relations and groups

Thursday 21 May 2015 (afternoon)

1 hour

Instructions to candidates

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- Unless otherwise stated in the question, all numerical answers should be given exactly or correct to three significant figures.
- A graphic display calculator is required for this paper.
- A clean copy of the mathematics HL and further mathematics HL formula booklet is required for this paper.
- The maximum mark for this examination paper is [60 marks].

Please start each question on a new page. Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working. For example, if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

1. [Maximum mark: 13]

Consider the set $S_{3}=\{p, q, r, s, t, u\}$ of permutations of the elements of the set $\{1,2,3\}$, defined by

$$
\begin{aligned}
& p=\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 2 & 3
\end{array}\right), q=\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 3 & 2
\end{array}\right), r=\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 2 & 1
\end{array}\right), \\
& s=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 3
\end{array}\right), t=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right), u=\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 1 & 2
\end{array}\right) .
\end{aligned}
$$

Let \circ denote composition of permutations, so $a \circ b$ means b followed by a. You may assume that $\left(S_{3}, \circ\right)$ forms a group.
(a) Complete the following Cayley table

\circ	\boldsymbol{p}	\boldsymbol{q}	\boldsymbol{r}	\boldsymbol{s}	\boldsymbol{t}	\boldsymbol{u}
\boldsymbol{p}						
\boldsymbol{q}			t			s
\boldsymbol{r}		u		t	s	q
\boldsymbol{s}		t	u			r
\boldsymbol{t}		s	q	r		
\boldsymbol{u}		r	s	q		

(b) (i) State the inverse of each element.
(ii) Determine the order of each element.
(c) Write down the subgroups containing
(i) r,
(ii) u.
2. [Maximum mark: 10]

The binary operation * is defined for $x, y \in S=\{0,1,2,3,4,5,6\}$ by

$$
x * y=\left(x^{3} y-x y\right) \bmod 7
$$

(a) Find the element e such that $e^{*} y=y$, for all $y \in S$.
(b) (i) Find the least solution of $x * x=e$.
(ii) Deduce that $\left(S,{ }^{*}\right)$ is not a group.
(c) Determine whether or not e is an identity element.
3. [Maximum mark: 12]

The relation R is defined on \mathbb{Z} by $x R y$ if and only if $x^{2} y \equiv y \bmod 6$.
(a) Show that the product of three consecutive integers is divisible by 6 .
(b) Hence prove that R is reflexive.
(c) Find the set of all y for which $5 R y$.
(d) Find the set of all y for which $3 R y$.
(e) Using your answers for (c) and (d) show that R is not symmetric.
4. [Maximum mark: 9]

Let X and Y be sets. The functions $f: X \rightarrow Y$ and $g: Y \rightarrow X$ are such that $g \circ f$ is the identity function on X.
(a) Prove that
(i) f is an injection,
(ii) g is a surjection.
(b) Given that $X=\mathbb{R}^{+} \cup\{0\}$ and $Y=\mathbb{R}$, choose a suitable pair of functions f and g to show that g is not necessarily a bijection.
5. [Maximum mark: 16]

Consider the sets

$$
G=\left\{\left.\frac{n}{6^{i}} \right\rvert\, n \in \mathbb{Z}, i \in \mathbb{N}\right\}, H=\left\{\left.\frac{m}{3^{j}} \right\rvert\, m \in \mathbb{Z}, j \in \mathbb{N}\right\} .
$$

(a) Show that $(G,+)$ forms a group where + denotes addition on \mathbb{Q}. Associativity may be assumed.
(b) Assuming that $(H,+)$ forms a group, show that it is a proper subgroup of $(G,+)$.

The mapping $\phi: G \rightarrow G$ is given by $\phi(g)=g+g$, for $g \in G$.
(c) Prove that ϕ is an isomorphism.

